

Measuring Software Evolution with Changing Lines of Code

Nikolaus Baer

Research Engineer
Zeidman Consulting

15565 Swiss Creek Lane
Cupertino, CA 95014 USA

phone: 650-832-1797
fax: 408-741-5231

Nik@ZeidmanConsulting.com

Robert Zeidman

President
Zeidman Consulting

15565 Swiss Creek Lane
Cupertino, CA 95014 USA

phone: 408-741-5809
fax: 408-741-5231

Bob@ZeidmanConsulting.com

ABSTRACT

A standard method for quantitatively measuring the

evolution of software and the intellectual property it

represents is needed. Traditionally, the evolution of

software systems has been subjectively measured by

counting the addition of new architectural elements or by

comparing source code metrics. An architectural analysis

is a subjective measurement technique, as each element

must be weighed by importance and difficulty of

implementation. This method also requires a complete

understanding of the architecture, which is not always

readily available. Traditional quantitative source code

metrics are designed to evaluate static code, and do not

properly capture the dynamic changes of code as it

evolves. These hurdles in traditional software analysis

necessitate the development of a new quantitative method

of evolution measurement. This method would also be

useful for measuring the evolution of the intellectual

property value of the source code. This paper

demonstrates a method for measuring the evolution of

source code by analyzing the number of lines of code that

have been modified, added, or remain through subsequent

versions. This new method of measuring the changing

lines of code (CLOC) will be demonstrated by examining

the evolution of three major open source projects: the

Linux Kernel, Apache HTTP Server and Mozilla Firefox.

General Terms

Maintenance, Software Evolution, Source Code Metrics.

Keywords

CodeDiff, CodeSuite, Evolution, Intellectual Property,

Metrics, Refactoring.

1. INTRODUCTION

Measuring the evolution of software is necessary in

computer science. Every science needs to have metrics

upon which to base the research and development. The

rate of software evolution is important for: measuring the

progress of large long-term software projects, evaluating

the remaining value of the initial development as a project

grows, improving the maintenances of code through better

understanding of the evolutionary activities, performing

“due diligence” before acquiring software or software

companies, and measuring work done under contract.

There are many valuable source code metrics for

measuring the size or complexity of a piece of software.

However, there is no standard method for measuring

software evolution. The traditional metrics provide

valuable insight into the size and complexity of a piece of

static code, but comparing these measurements over the

course of a software project’s life can be inconclusive.

They were not developed to measure evolving programs.

The “changing lines of code method” (CLOC) has

been designed to measure the kinetics of software

evolution. This method analyzes the number of “lines of

code” (LOC) that are modified, added, or remain constant

through the life of a software project. By concentrating on

the kinetic activities that occur between subsequent

versions of a software project, instead of examining static

snapshots of size or complexity the CLOC method

properly captures the evolution of software.

2. MAINTENANCE & DEVELOPMENT

Measuring the evolution of source code is equivalent

to measuring the amount of maintenance and

development performed on an application. Maintenance

and development are the kinetic activities that cause

source code evolution. Proper maintenance and

development prevents software from wearing out, and

should increase the value of the software [1].

The percentage of original code inside the entire

software project will diminish as maintenance and

development proceeds. Some portions of code will be

changed to fix problems, some will become outdated and

removed, and some will be refactored to improve the

readability or to simplify the structure. A software project

will also have enhancements, which will add code. As a

rough estimate, the value of a portion of software is

proportional to its percentage of the whole project.

3. EXISTING METRICS

There are several common software metrics,

including: lines of source code, cyclomatic complexity

(also known as the McCabe measure), function point

analysis, bugs per line of code, and code coverage [2].

Each method is designed to quantify the amount of work

involved in producing or maintaining software. Each

method quantifies a single software characteristic in an

attempt to measure the software as a whole. Some of

these methods such as cyclomatic complexity focus on the

complexity of the software, and some such as lines of

source code focus on the size of the software.

Unfortunately, none of these methods provide a useful

measurement of the effort involved in changing the

software.

3.1 Cyclomatic Complexity

In 1976 Thomas McCabe proposed a complexity

measure known as cyclomatic complexity (“CC”) [3].

This method counts the number of individual paths

through the code. For instance, a single IF statement

would count as two distinct paths through the code: the

first path represents the statement being “True” and a

second path for “False.” CC can be calculated by creating

graphs of source code and counting the execution paths.

This can be a tedious process, as just a few lines of code

can result in many distinct paths. Software tools such as

Understand from Scientific Toolworks, Inc. have been

developed with the capability to provide CC

measurements [4].

The complexity of the code is not a clear indicator of

source code evolution. There are several forms of source

code maintenance that may simplify the execution paths

of a program. The fixing of bugs, deletion of outdated

code, and the refactoring of code can all take a significant

amount of work and have a significant impact on the

functionality of a program, but may decrease or have no

effect on the CC measurement.

3.2 Lines of Code

The simplest way to measure software is to count the

source lines of code to determine the size of the software

(“SLOC”). Although the SLOC metric does not take into

account the complexity of the code, it is a good metric for

measuring the effort involved in the production of code.

Typically a larger SLOC measurement means there was

more effort involved.

The SLOC metric is simple to measure; it is less

subjective and it correlates well with effort and

programming productivity. It has a stronger correlation to

the work involved with building software than other

measurement techniques [5 p. 119]. However, comparing

SLOC values of subsequent versions is not a perfect

measurement of the evolution of source code. It does not

properly measure the efforts involved in refactoring,

debugging or trimming existing source code. SLOC

equates productivity to the development of more code and

is inaccurate when the activities involve deletion or

alteration of code [6 p. 18]. As stated by Bill Gates,

“Measuring programming progress by lines of code is like

measuring aircraft building progress by weight” [7]. The

SLOC metric is valuable, but comparing SLOC

measurements between versions does not properly

measure the progress of normal software maintenance and

development.

4. CHANGING LINES OF CODE

This paper demonstrates the measurement of the

changing lines of code (CLOC) metric. A useful software

evolution measurement must include an analysis of the

lines that were changed or removed. It examines the

changes involved instead of the static size or complexity.

The CLOC method counts the number of lines of code

that have been modified, added, or remain constant

between subsequent versions of a software project. These

measurements are then analyzed to determine the

percentage growth of the software. Software evolution

and the CLOC method can be shown as either the growth

of the software or the decay of the original source code.

The CLOC method properly measures the intricacies of

source code maintenance and provides a quantitative

metric for software evolution.

5. SETUP

We chose to demonstrate the CLOC technique

through the investigation of open-source projects. We

chose three different projects, to have a wider data set and

to not be restricted to anomalies in a single project. In

order for us to use a project it had to be primarily written

in C and/or C++, have at least 4 major versions over at

least 5 years, and be sufficiently complex. Three well

known open-source projects that fit these qualifications

were the Linux Kernel, the Apache HTTP Server and the

Mozilla Firefox browser.

The major releases of each open source project were

downloaded and analyzed. For the Linux Kernel it was

determined that the major releases spanning from 1994

until 2003 are: 1.0, 1.2, 2.0, 2.2, 2.4, and 2.6 [8]. These

versions were downloaded from www.kernel.org . The

major Apache Http Server versions are: 1.3.0, 1.3.41,

2.0.35, 2.0.63, 2.2.9 [9]. The Apache source was

downloaded from http://httpd.apache.org/download.cgi.

The Mozilla Firefox project started in 2002 and the major

versions that we chose to examine are: 0.1, 0.8, 1.0, 1.5,

2.0, and 3.0 [10]. The source code was downloaded from

ftp://ftp.mozilla.org/pub/mozilla.org/firefox/releases/.

5.1 Expected Growth

For comparison, the CLOC measurements will be

compared to a calculated expected growth rate. We

decided to use the expected growth rate suggested by

David Roux, who said that each version of a software

project (“Vn”) grows by the size of the initial software

release (“V0”) [11 p. 13].

Vn = Vn-1 + V0

5.2 CodeSuite®/CodeDiff®

The CLOC method needs a way to measure the

differences between files. We selected the CodeDiff®

tool, which is part of the CodeSuite® program from

Software Analysis & Forensic Engineering Corporation

(S.A.F.E.), to perform the measurements. This application

provides the ability to quickly compare the lines of code

between different directories. It produces detailed reports

on the differences between each version of each file for an

entire project. We placed the different versions of each

project into individual directories and then compared the

directories. CodeDiff produced HTML reports of the

differences as well as statistics on the changes between

the project versions.

The CLOC method is distinguished from other

examinations by framing the analysis around the

differences between versions. CodeDiff allows us to

distinguish the changes in non-blank LOC between

versions. Non-blank LOC are those lines that are either

statements or comments, but not blank lines. This

eliminates the inaccuracies of counting empty lines while

retaining the value of comments.

We did several CodeDiff analyses to generate the

datasets for further statistical examination. We limited the

CodeDiff comparison to only compare the lines of files

with the same name. Typically file names are not changed

from version to version, and a movement of source code

between files or a file name change represents work being

performed. CodeDiff was configured to compare the

projects as C and C++ source code.

The Firefox comparisons each involved well over

200MB of source code. Even with the speed of the fast

CodeDiff algorithms, these comparisons would have took

a considerable amount of time. To efficiently compare

such a large amount of code we used the CodeGrid®

computer grid from S.A.F.E. Corp. to split the CodeDiff

processing of the Firefox versions across four machines

simultaneously.

5.2.1 Intellectual Property

CLOC can provide insight into how the original

intellectual property (IP) continues through subsequent

versions. We obtained the earliest version of source code

available from each software project and deemed it to be

the “original version.” We used CodeDiff to perform the

comparisons between the original and each subsequent

version of the particular project. This enabled us to

determine how many files and LOC in the original

version remain in each subsequent version. Although IP

value is not directly related to measuring lines of code,

the CLOC measurement can be useful for calculating the

value of the original IP relative to value of the IP in the

current software version.

5.2.2 Non-Header files

Header files typically contain definitions,

declarations, and simple macros, but not a significant

amount of functional code. Header files can be added to a

project to provide declarations for third-party library

functions that are not part of the protectable intellectual

property of a project. We generated a second set of results

based upon non-header files (source code files other than

header files), which we expected to have a higher rate of

change.

5.2.3 Removing Duplicates

One artifact of CodeDiff that had to be compensated

for was the existence of duplicate matches. For our

purposes, file A “matches” file B if they have the same

name and no other file has a higher percentage of LOC in

common. CodeDiff reports every file that can be

considered a match, meaning that it will report that file A

matches file B and file C matches file B, so file B is

considered as matching two different files. We decided

that each file in the initial version should have at most one

true match in a subsequent version. We developed a post-

process utility that searched the database created by

CodeDiff, found matching file pairs, eliminated the

lowest percentage duplicates, and then re-matched files.

This process continued until all files were uniquely

matched or could not be matched.

6. RESULTS

After each comparison was processed, the results

were entered into spreadsheets that contained formulas for

the CLOC calculations. We generated the number of new

LOC, counting changed lines as new lines. The process

also provided the total and percentage of original lines

and files that continued in each subsequent version.

We also generated the traditional metrics for comparison.

We used Understand from SciTools, Inc. to measure the

total cyclomatic complexity (TCC) of each project. The

SLOC of each version was provided by the CodeSuite

analysis. These measurements were compared against the

new CLOC method.

6.1 Average Results

The results from each of the three projects were

combined into average percentages as shown in Figure 1.

We averaged the percentages calculated for each software

project instead of the actual number of lines in order to

compensate for the varied sizes and characteristics of each

project. The observed rate of evolution starts lower than

the calculated expected value and then increases to a

higher rate than calculated. The average observed rate

seems to follow an exponential growth trend, whereas the

calculated expected rate is linear. There are many models

of software growth rate that are based upon exponential

formulas, which our observed growth rate indicates may

be more accurate [11].

Figure 1: Average CLOC and Estimated Average

Growth from Linux, Apache and Firefox

The CLOC measurements can also be shown as an

average percentage of continuing code through each

subsequent version. The decay of original code is shown

in Figure 2. Both the percentage of remaining LOC and

the percentage of remaining files are displayed. The two

data series are very close, which shows that on average

the majority of new content was added into new files.

Figure 2: Average percent continuing

6.2 Apache Server Results

The Apache HTTP Server analysis involved

comparing version 1.3.0 against versions 1.3.41, 2.0.35,

2.0.63, and 2.2.9. The CLOC growth measurements can

be seen in Figure 3. The project grew from 150 files to

809 files. Figure 4 shows that eight percent of the original

files were found in the final version, and six percent of the

original LOC continued throughout all of the versions.

This project’s growth closely followed the calculated

expected growth rate.

Figure 3: Apache new LOC

The data series in Figure 4 show the decay of original

code as measured by the CLOC method as well as the

traditional software metrics. The percentage of remaining

code is shown to be higher than the percentage of

continuing code when the simpler SLOC is used. This is

consistent with the short-coming of the SLOC comparison

method discussed earlier; the method does not adjust for

the change or removal of original code.

Figure 4: The percentage of continuing LOC, files,

SLOC and TCC in subsequent Apache releases

0%
100%
200%
300%
400%
500%
600%
700%
800%

Version 1Version 2Version 3Version 4Version 5

% New LOC / Original LOC

Estimated Percentage Growth

0%

20%

40%

60%

80%

100%

120%

Version 1Version 2Version 3Version 4Version 5

% Continuing V1 Files / Total Files

% Continuing V1 LOC / Total LOC

0%
50%

100%
150%
200%
250%
300%
350%
400%
450%

Version

1.3.0

Version

1.3.41

Version

2.0.35

Version

2.0.63

Version

2.2.9

% New LOC/ Total Original LOC

0%

20%

40%

60%

80%

100%

120%

Version

1.3.0

Version

1.3.41

Version

2.0.35

Version

2.0.63

Version

2.2.9

% Continuing 1.0 LOC / Total LOC

% Continuing 1.3.0 Files / Total Files

% 1.3.0 SLOC/ Total SLOC

% 1.3.0 TCC/ TCC

The change in the total cyclomatic complexity is also

shown in Figure 4. The TCC evolution measurement

shows less decay and thereby less evolution than

measured with the CLOC method, but it is a small

difference.

The measurements were similar when header files

were excluded. The average difference between

for all files and the data for non-header files exclusively

was only 1%. The Apache project did have a larger rate of

original code decay when header files were excluded,

which indicates that the LOC and original

more in the non-header files than in the header files.

6.3 Mozilla Firefox Results

The data for the Firefox browser was composed of

comparisons between versions 0.1 and the subsequent

versions: 0.8, 1.0, 1.5, 2.0, and 3.0. A large 75% of the

original 0.1 files remained in the last version, as well as

53% of the original LOC. Although decay in the original

code was detected, it was inconsistent. Version 1.0

actually had 3% more of the original LOC than the earlier

version 0.8. The growth was also inconsistent; the total

SLOC fluctuated instead of consistently

expected.

The percentage of SLOC in Figure

demonstration of the possible idiosyncrasies of using

SLOC to measure source code evolution. The graph in

Figure 5 would indicate that version 3.0 of the Firefox

browser was 96% continuing code, because the size had

not changed much. It is unlikely that the maintenance

development of the popular Internet browser over five

major versions would only result in 4% new code. The

47% new code measured by the CLOC method is clearly

a more accurate measure of the source code evolution.

Figure 5: The percentage of continuing

SLOC and TCC in subsequent Firefox

0%

20%

40%

60%

80%

100%

120%

140%

Version

0.1

Version

0.8

Version

1.0

Version

1.5

% Continuing 0.1 LOC / Total LOC

% Continuing 0.1 Files / Total Files

% 0.1 SLOC/ Total SLOC

The change in the total cyclomatic complexity is also

The TCC evolution measurement

shows less decay and thereby less evolution than when

measured with the CLOC method, but it is a small

The measurements were similar when header files

were excluded. The average difference between the data

header files exclusively

The Apache project did have a larger rate of

decay when header files were excluded,

which indicates that the LOC and original code changed

r files than in the header files.

browser was composed of

and the subsequent

0.8, 1.0, 1.5, 2.0, and 3.0. A large 75% of the

t version, as well as

. Although decay in the original

ent. Version 1.0

than the earlier

version 0.8. The growth was also inconsistent; the total

instead of consistently increase as

Figure 5 is a drastic

demonstration of the possible idiosyncrasies of using

to measure source code evolution. The graph in

would indicate that version 3.0 of the Firefox

browser was 96% continuing code, because the size had

that the maintenance and

browser over five

ould only result in 4% new code. The

CLOC method is clearly

a more accurate measure of the source code evolution.

The percentage of continuing LOC, files,

Firefox releases

Figure 5 also demonstrates

complexity as a measure of software evolution.

subsequent versions 0.8 and 1.0 ha

than the original version. Although there are many

of source code maintenance that can cause

comparison of these TCC measu

indicates that reverse evolution

inconsistency shows that comparing

reliable method for measuring software evolution.

The CLOC method is the only measurement that

shows a consistent evolution of the Firefox project, as

well as a consistent decay of original code. The other

metrics produced inaccurate results.

6.4 Linux Kernel Results

The data on the Linux Kernel was compiled by

comparing version 1.0 against 1.2, 2.01, 2.2.0, 2.4.0 and

2.6.0. The project grew from 487 files to 12

shown in Figure 7 below, only 3% of the final files were

continuing files from version 1.0, and 1% of the

version 2.6.0 were from version 1.0

This project showed the greatest growth and the most

consistent decay of original code

release 2.2.0 the growth of the Kernel began to outpace

the calculated estimated software growth. By version

2.6.0 the size of the code was over four times that of the

estimated size.

Figure 6: The calculated vs. actual growth of the

Linux Kernel

The average difference between the data for all fi

and the data for non-header files only was only 1%. This

is a small difference, but it does confirm that the source

code in the non-header files did change more than in the

header files.

The data series in Figure 7

SLOC and TCC for each version

Version Version

2.0

Version

3.0

% Continuing 0.1 LOC / Total LOC

% Continuing 0.1 Files / Total Files

Version

1.0

Version

1.2.0

Version

2.0.1

Version

2.2.0

Expected Version Size Determined by Original

LOC Multiplier

Total Lines of Code (non

 the problem with using

complexity as a measure of software evolution. The

ubsequent versions 0.8 and 1.0 have lower levels of TCC

Although there are many parts

that can cause this, a

TCC measurements incorrectly

evolution occurred. This

comparing complexities is not a

reliable method for measuring software evolution.

The CLOC method is the only measurement that

shows a consistent evolution of the Firefox project, as

as a consistent decay of original code. The other

metrics produced inaccurate results.

The data on the Linux Kernel was compiled by

comparing version 1.0 against 1.2, 2.01, 2.2.0, 2.4.0 and

2.6.0. The project grew from 487 files to 12,412 files. As

below, only 3% of the final files were

continuing files from version 1.0, and 1% of the LOC in

were from version 1.0.

his project showed the greatest growth and the most

code. Figure 6 shows that by

release 2.2.0 the growth of the Kernel began to outpace

software growth. By version

2.6.0 the size of the code was over four times that of the

vs. actual growth of the

Linux Kernel

The average difference between the data for all files

header files only was only 1%. This

is a small difference, but it does confirm that the source

header files did change more than in the

also show the change in

SLOC and TCC for each version. We believe the rapid

Version

2.2.0

Version

2.4.0

Version

2.6.0

Expected Version Size Determined by Original

Total Lines of Code (non-blank lines)

rate of code growth in the Linux Kernel causes these

metrics to actually follow the trend of the more accurate

CLOC measurements and masks the inaccuracies of the

traditional metrics that were apparent in the other project

comparisons.

Figure 7: The percentage of continuing LOC, files,

SLOC and TCC in subsequent Linux Kernel releases

7. AREAS FOR FUTURE WORK

There are a number of interesting areas for future

work in this field. Another program from S.A.F.E. called

CodeMatch® could be used to exclude comments from

the CLOC method to determine if there is a difference in

results when only functional statements are examined.

The CLOC method has been shown to be an accurate

quantitative measurement of software evolution, so it

would be very interesting to test the different rules that

have been proposed regarding sustainable software

development and expected software growth. The test

could be set-up in a manner similar to this paper, in that

additional open-source projects could be evaluated and

the average results compared to the various rules. Once

software growth and sustainability rules are vetted by a

large scale CLOC test, individual projects could be

analyzed against the newly verified rules.

It would also be interesting to use the CLOC method

to study the value of software and software growth.

Further studies could investigate how the monetary value

of the original software and intellectual property changes

as the software project evolves. The CLOC method could

also be used to examine possible correlations between

software growth and market value growth.

8. CONCLUSION

The measurement of source code evolution by

analyzing the number of LOC that have been modified,

added, or remain through different versions of a software

project has been demonstrated through the CLOC method.

The use of CodeDiff allows for the precise measurement

of how the source code has changed. By examining the

differences instead of the SLOC, the evolution of the

source code is better understood. The first main advantage

is the ability to measure how many changed LOC exist.

The CLOC metric is more representative of the growth

because it takes refactoring, and deletion of code into

account. Through the CLOC method, the percent of

continuing files and LOC in each subsequent release can

be clearly measured. This measurement of remaining

source code represents the original code that continues

throughout the project as the project evolves. The final

advantage of this method is that it is simple and

quantitative. By measuring the changes in LOC between

versions, it does not rely on any subjective metrics. The

CLOC method’s advantages of precision and objectivity

set a new standard for quantitatively measuring source

code evolution.

ACKNOWLEDGEMENTS

The authors would like to thank Tim Hoehn of

Software Analysis & Forensic Engineering Corporation

who ran large CodeDiff analyses on the SAFE CodeGrid

system.

REFERENCES

[1] Spolsky, Joel. Joel on Software. New York : Apress,

2004.

[2] Software Metrics. SQL Software Quality Assurance.

[Online] [Cited: 10 02, 2008.]

http://www.sqa.net/softwarequalitymetrics.html.

[3] McCabe, Thomas J. A Complexity Measure.

December 1976, IEEE Transactions on Software

Engineering, Vols. SE-2, No. 4, pp. 308-320.

[4] KevinG. Documentation: How to get metrics with

Understand 2.0. SciTools. [Online] July 11, 2008.

[Cited: October 2, 2008.]

http://www.scitools.com/blog/2008/07/metrics-

galore.html.

[5] Park, Robert E. Software Size Measurement: A

Framework for Counting Source Statements.

Pittsburgh : Software Engineering Institute: Carnegie

Mellon University, 1992.

[6] Jones, Capers. Programming Productivity. San

Francisco : McGraw-Hill Publishing Company, 1986.

0%

20%

40%

60%

80%

100%

120%

Version

1.0

Version

1.2.0

Version

2.0.1

Version

2.2.0

Version

2.4.0

Version

2.6.0

% Continuing 1.0 LOC / Total LOC

% Continuing 1.0 Files / Total Files

% 1.0 SLOC/ Total SLOC

% 1.0 TCC/ TCC

[7] Source Lines of Code. Wikipedia. [Online] [Cited:

October 2, 2008.]

http://en.wikipedia.org/wiki/Source_lines_of_code.

[8] Linux kernel. Wikipedia. [Online] [Cited: October 3,

2008.]

http://en.wikipedia.org/wiki/Freax#Stable_version_hi

story.

[9] Boyd, Summer, et al. The Apache Web Server: an

Open Source Project.

[10] Mozilla Firefox. Wikipedia. [Online] [Cited: July 25,

2008.] http://en.wikipedia.org/wiki/Firefox.

[11] Wiederhold, Gio. What is Your Software Worth?

[Online] June 19, 2006. [Cited: August 12, 2008.]

http://infolab.stanford.edu/pub/gio/2006/worth30.pdf.

[12] Howard, Daniel. Source code directories overview.

Mozilla.org. [Online] June 2, 2005. [Cited: August

12, 2008.] http://www.mozilla.org/docs/source-

directories-overview.html.

[13] Project metrics Help. Aivosto.com. [Online] [Cited:

11 14, 2008.]

http://www.aivosto.com/project/help/pm-

complexity.html.

[14] Greg Kroah-Hartman, Jonathan Corbet, Amanda

McPherson. Linux Kernel Development How Fast it

is Going, Who is Doing It, What They are Doing, and

Who. www.novell.com. [Online] March 2008. [Cited:

August 12, 2008.]

http://www.novell.com/rc/docrepository/public/37/ba

sedocument.2008-05-

13.7066315223/Who_Writes_Linux_en.pdf.

[15] Index of

ftp://ftp.mozilla.org/pub/mozilla.org/firefox/releases/.

Mozilla.org. [Online] [Cited: July 25, 2008.]

ftp://ftp.mozilla.org/pub/mozilla.org/firefox/releases/.

[16] Index of /pub/linux/kernel. Kernel.org. [Online]

[Cited: July 24, 2008.]

http://www.kernel.org/pub/linux/kernel/.

[17] Downloading the Apache HTTP Server. Apache

HTTP Server Project. [Online] [Cited: July 24,

2008.] http://httpd.apache.org/download.cgi.

AUTHOR BIOS

Nikolaus Baer is a

research engineer at

Zeidman Consulting.

He has developed

software for marine

research, optical testing

equipment, military

terrain databases,

mobile applications, and medical devices. He has written

about software trade secret theft and is certified in the use

of CodeSuite. He holds a BS degree in computer

engineering from UC Santa Barbara, where he attended

on a Regents Scholarship. He placed first in the Start Cup

2004 business plan competition.

Robert Zeidman is a

Senior Member of the

IEEE and President of

Zeidman Consulting

(www.ZeidmanConsultin

g.com) a contract

research and

development firm. Since

1983, he has designed

ASICs, FPGAs, and PC

boards for RISC-based

parallel processor

systems, laser printers, network switches and routers, and

other real time systems. Among his publications are

technical papers on hardware and software design

methods as well as three textbooks -- Designing with

FPGAs and CPLDs, Verilog Designer's Library, and

Introduction to Verilog. He has taught courses at

engineering conferences throughout the world. Bob holds

three patents and earned an MS degree in electrical

engineering at Stanford University and BS degrees in

physics and electrical engineering at Cornell University.

